Decide on Office 365 Migration Path

Deciding on the best migration path of your users’ email to Office 365 can be difficult. Your migration performance will vary based on your network, existing messaging systems design, mailbox size, migration speed, and so on.

Office365

For migrations from an existing on-premises Exchange Server environment, you can migrate all email, calendar items, tasks and contacts from user mailboxes to Office 365. The available methods are cutover, staged, and Exchange Hybrid migrations.

For migrating third-party email to Office 365, you can configure mail flow coexistence if the third-party email provider permits then migrate the mailboxes using IMAP or cutover migration options.

Migrating from Exchange 2003 or Exchange 2007

Number of mailboxes How quickly do you want to migrate? Use
Fewer than 150 Over a weekend or a few days. Cutover
Fewer than 150 Slowly, by migrating a few users at a time. Staged
Over 150 Over a weekend or a few days. Staged
Over 150 Slowly, by migrating a few users at a time. Staged

Migrating from Exchange 2010 or Exchange 2013 or Exchange 2016 or Exchange 2019

Number of mailboxes How quickly do you want to migrate? Use
Fewer than 150 Over a weekend or a few days. Cutover
Fewer than 150 Slowly, by migrating a few users at a time. Exchange Hybrid
Over 150 Over a weekend or a few days. Exchange Hybrid
Over 150 Slowly, by migrating a few users at a time. Exchange Hybrid

Migrating from third-party email system to Office 365

Number of mailboxes How quickly do you want to migrate? Use
Fewer than 150 Over a weekend or a few days. Cutover
more than 150 Slowly, by migrating a few users at a time. IMAP with mail flow coexistence

If the mailboxes you’re migrating contain a large amount of data, you can also use Office 365 Import Service to import PST files to Office 365.

Azure Stack Pricing Model

Azure Stack is sold as an integrated system, with software pre-installed on validated hardware. Azure Stack comes with two operational modes—Connected and Disconnected. Connected Mode use Azure metering services with the Microsoft Azure Cloud. The Disconnected Mode does not use Azure metering services. The Disconnected Mode is based on capacity pricing model. The Connected Mode is a Pay-as-you-use software pricing model.

Azure Stack.png

Licensing Model

Payment Method Description License Type
PAYG No upfront cost EA or CSP
Capacity Model Fixed Fees per annum EA Only

Windows and SQL License

You have to use licenses from any channel (EA, SPLA, Open, and others), as long as you comply with all software licensing and product terms.

Linux Licenses

You have to use RedHat or other Linux licenses on the Azure Stack if you choose to use Linux Operating Systems. You have to pay to the software vendor for use of their software on the Azure Stack.

Connected Mode for Cloud Service Provider (CSP)

Azure Stack offers pay-as-you-use pricing, just like you get with Azure. Run infrastructure as a service (IaaS) and platform as a service (PaaS) on Azure Stack with no upfront fees, and use the same subscriptions, monetary commitments, and billing tools as Azure. The pay-as-you-use package is available through Enterprise Agreements (EA) and the Cloud Solution Provider program (CSP).

Service Type Description Hourly Rate Monthly Rate
Compute Base VM $0.011/vCPU $8 vCPU
  Windows VM $0.059/vCPU $43 vCPU
Storage Storage   $0.008/GB
  Table & Queue   $0.023/GB
  Unmanaged Disk   $0.015/GB
App Services Web Apps, API, Functions $0.072/vCPU

 

$53 vCPU

The Connected Mode is available through both Enterprise Agreement (EA) and Cloud Service Provider (CSP) partner channel. Azure MSDN, Free Trial, and Biz Spark subscription IDs cannot be used in conjunction with Azure Stack.

Your Azure Stack usage will be metered and integrated into one bill with your Azure usage.

Use cases:

The customer already has Azure Subscription. The customer wants to establish hybrid cloud in conjunction with Azure Cloud.

Disconnected Mode for Azure Stack On-premises

the App Service package, which includes App Service, base virtual machines, and Azure Storage ($400/core/year), and the IaaS package, which includes base virtual machines and Azure Storage ($144/ core/year.) With the capacity model, you use your existing on-premises licenses to deploy Windows Server and SQL Server virtual machines.

The capacity model is available via EA only. It is purchased as an Azure Plan SKU via normal volume licensing channels.

Use Cases

The customer wants to build their own private cloud platform and offer services to their departments and subsidiaries. The purpose of this exercise is to segregate billing of each department but maintain single ICT organisation.

Azure Stack Support

Azure Stack support is a consistent, integrated, hybrid support experience that covers the full system lifecycle. If you already have Premier, Azure, or Partner support with Microsoft, your Azure Stack software support is included. You need only make one call to the vendor of your choice (Microsoft or hardware partner) for any Azure Stack issue.

For up-to-date pricing visit Microsoft website.

Amazon EC2 and Azure Virtual Machine (Instance) Comparison

Both Amazon EC2 and Azure VM provide a wide selection of VM types optimised to fit different use cases. An instance or VM is combinations of virtual CPU, virtual memory, temporary storage, and networking capacity and give a customer the flexibility to choose the appropriate mix of resources for workloads. Both AWS EC2 and Azure offers instances at scale for the requirements of any target workload. Both EC2 and Azure provide the option to store VM in persistent storage called EBS in Amazon terminology or Blob Storage in Azure terminology.

EC2 vs Azure VM

Available Windows/Linux VM both Cloud Services Providers:

Type Description Azure VM

Windows & Linux

AWS EC2

Windows & Linux

General purpose Balanced CPU-to-memory ratio. B, Dsv3, Dv3, DSv2, Dv2, Av2 T2, M4, M5
Compute-optimised High CPU-to-memory ratio. Fsv2, Fs, F C4, C5
Memory-optimised High memory-to-CPU ratio. Great for database servers Esv3, Ev3, M, GS, G, DSv2, Dv2 X1e, X1, R5, R4, Z1d
Storage optimised High disk throughput and IO. Ls H1, i3, D2
GPU Specialized for heavy graphic rendering and video editing NV, NC, NCv2, NCv3, ND P3, P2, G3, F1
High performance compute fastest and most powerful CPU H C4, C5

Both AWS and Azure are utility pricing model analogous to your gas, water or power bills. Both Amazon and Azure provide standard instance as PAYG model, and also some instances are available in the reserved pricing model. In a reserved pricing model, you pay upfront at a cheaper rate for instance but commit for certain months or years. In a reserved instance, you pay additional for -storage consumption and network utilisation if it’s cross-geo connectivity. Both AWS and Azure have vast marketplace from where you can pick up and deploy any instance of your requirements at Scale.

Here is where Microsoft differentiate from AWS, you can save up to 72% over pay-as-you-go pricing with an upfront one- or three-year commitment in Azure Cloud. You can also exchange or cancel the RI at any time. Microsoft also offers Hybrid benefits, i.e. 40% off when you bring in Microsoft Windows/Linux workloads from On-prem to Azure. You can use your on-premises Windows Server or SQL Server licences with Software Assurance to make big savings when migrating a few workloads or entire data centres to the cloud.

You can get discounted rates on Azure for your ongoing development and testing, including no Microsoft software charges on Azure Virtual Machines and special dev/test pricing on other services.

Microsoft also offers US$5000 credit for the validated Not-for-Profit organisation for the use of Azure Cloud whilst signing

Relevant References:

Azure Pricing Calculator

Azure TCO Calculator

Offset IT Cost with Azure Cloud

Microsoft Azure credits now available to eligible not-for-profit organisations

Azure 54 regions in 140 countries

Migrate Amazon Web Services (AWS) EC2 VM to Azure Cloud

In my previous blog, I have written how to migrate workloads from VMware to Azure Cloud.  In this tutorial, I am going to elaborate you how to migrate Amazon Web Services (AWS) EC2 virtual machines (VMs) to Azure VMs by using Azure Site Recovery.

AWStoAzure

Supported Workloads Which can be migrated:

  1. Windows Server 2016 or later version
  2. Red Hat Enterprise Linux 6.7

Prerequisites

  1. The Mobility service must be installed on each VM that you want to replicate. Site Recovery installs this service automatically when you enable replication for the VM.
  2. For non-domain joined Windows VMs, disable Remote User Access control on the local machine at the registry, under HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Policies\System, add the DWORD entry LocalAccountTokenFilterPolicy and set the value to 1.
  3. A separate VM in AWS subscriptions to use as Site Recovery Configuration Server. This instance must be running Windows Server 2012 R2.

Credential Requirements

  1. A root on the source Linux server
  2. A Domain Admin Credentials for Windows VM.
  3. A Local Admin Account for non-domain joined VM.

Prepare Azure resources (Target)

Step1: Create a Storage Account

  1. In the Azure portal, in the left menu, select Create a resource > Storage > Storage account.
  2. Create a Storage Account in your region.

Step2: Create a Recovery Vault

  1. In the Azure portal, select All services. Search for and then select Recovery Services vaults.
  2. Add new Recovery Vault in your region.

Step3: Add a separate network for migrated VM

  1. In the Azure portal, select Create a resource > Networking > Virtual network.
  2. Add new Network and Address Space.

Step4: Prepare Recovery Goal

  1. On your vault page in the Azure portal, in the Getting Started section, select Site Recovery, and then select Prepare Infrastructure.
  2. Create a protection goal from On-prem to Azure.
  3. When you’re done, select OK to move to the next section.

Step5: Create a Replication Policy

  1. To create a new replication policy, click Site Recovery infrastructure > Replication Policies > +Replication Policy. In Create replication policy, specify a policy name.
  2. In RPO threshold, specify the recovery point objective (RPO) limit. This value specifies how often data recovery points are created. An alert is generated if continuous replication exceeds this limit.
  3. In Recovery point retention, specify how long (in hours) the retention window is for each recovery point. Replicated VMs can be recovered to any point in a window. Up to 24 hours retention is supported for machines replicated to premium storage, and 72 hours for standard storage.
  4. In App-consistent snapshot frequency, specify how often (in minutes) recovery points containing application-consistent snapshots will be created. Click OK to create the policy.

Prepare Source Environment (AWS)

Step6: Prepare Source ASR Configuration Server

  1. Log on to the EC2 instance where you would like to install Configuration Server
  1. Configure the proxy on the EC2 instance VM you’re using as the configuration server so that it can access the service URLs.
  2. Download Microsoft Azure Site Recovery Unified Setup. You can download it to your local machine and then copy it to the VM you’re using as the configuration server.
  3. Select the Download button to download the vault registration key. Copy the downloaded file to the VM you’re using as the configuration server.
  4. On the VM, right-click the installer you downloaded for Microsoft Azure Site Recovery Unified Setup, and then select Run as administrator.
  5. Under Before You Begin, select Install the configuration server and process server, and then select Next.
  6. In Third-Party Software License, select I accept the third-party license agreement, and then select Next.
  7. In Registration, select Browse, and then go to where you put the vault registration key file. Select Next.
  8. In Internet Settings, select Connect to Azure Site Recovery without a proxy server, and then select Next.
  9. The Prerequisites Check page runs checks for several items. When it’s finished, select Next.
  10. In MySQL Configuration, provide the required passwords, and then select Next.
  11. In Environment Details, select No. You don’t need to protect VMware machines. Then, select Next.
  12. In Install Location, select Next to accept the default.
  13. In Network Selection, select Next to accept the default.
  14. In Summary, select Install. Installation Progress shows you information about the installation process. When it’s finished, select Finish. A window displays a message about a reboot. Select OK. Next, a window displays a message about the configuration server connection passphrase. Copy the passphrase to your clipboard and save it somewhere safe.
  15. On the VM, run cspsconfigtool.exe to create one or more management accounts on the configuration server. Make sure that the management accounts have administrator permissions on the EC2 instances that you want to migrate.

Step7: Enable Replication for a AWS EC2 VM

  1. Click Replicate application > Source.
  2. In Source, select the configuration server.
  3. In Machine type, select Physical machines.
  4. Select the process server (the configuration server). Then click OK.
  5. In Target, select the subscription and the resource group in which you want to create the Azure VMs after failover. Choose the deployment model that you want to use in Azure (classic or resource management).
  6. Select the Azure storage account you want to use for replicating data.
  7. Select the Azure network and subnet to which Azure VMs will connect, when they’re created after failover.
  8. Select Configure now for selected machines, to apply the network setting to all machines you select for protection. Select Configure later to select the Azure network per machine.
  9. In Physical Machines, and click +Physical machine. Specify the name and IP address. Select the operating system of the machine you want to replicate. It takes a few minutes for the servers to be discovered and listed.
  10. In Properties > Configure properties, select the account that will be used by the process server to automatically install the Mobility service on the machine.
  11. In Replication settings > Configure replication settings, verify that the correct replication policy is selected.
  12. Click Enable Replication. You can track progress of the Enable Protection job in Settings > Jobs > Site Recovery Jobs. After the Finalize Protection job runs the machine is ready for failover.

Test failover at Azure Portal

Step8: Test a Failover

  1. On the page for your vault, go to Protected items > Replicated Items. Select the VM, and then select Test Failover.
  2. Select a recovery point to use for the failover:
    • Latest processed: Fails over the VM to the latest recovery point that was processed by Site Recovery. The time stamp is shown. With this option, no time is spent processing data, so it provides a low recovery time objective (RTO).
    • Latest app-consistent: This option fails over all VMs to the latest app-consistent recovery point. The time stamp is shown.
    • Custom: Select any recovery point.
  3. In Test Failover, select the target Azure network to which Azure VMs will be connected after failover occurs. This should be the network you created in Prepare Azure resources.
  4. Select OK to begin the failover. To track progress, select the VM to view its properties. Or you can select the Test Failover job on the page for your vault. To do this, select Monitoring and reports > Jobs > Site Recovery jobs.
  5. When the failover finishes, the replica Azure VM appears in the Azure portal. To view the VM, select Virtual Machines. Ensure that the VM is the appropriate size, that it’s connected to the right network, and that it’s running.
  6. You should now be able to connect to the replicated VM in Azure.
  7. To delete Azure VMs that were created during the test failover, select Cleanup test failover in the recovery plan. In Notes, record and save any observations associated with the test failover.

Migrate an AWS EC2 Instance to Azure Cloud

Step9: Trigger Azure Migration

  1. In Protected items > Replicated items, select the AWS instances, and then select Failover.
  2. In Failover, select a Recovery Point to failover to. Select the latest recovery point.
  3. Select Shut down machine before beginning failover if you want Site Recovery to attempt to do a shutdown of source virtual machines before triggering the failover. Failover continues even if shutdown fails. You can follow the failover progress on the Jobs
  4. Ensure that the VM appears in Replicated items.
  5. Right-click each VM, and then select Complete Migration. This finishes the migration process, stops replication for the AWS VM, and stops Site Recovery billing for the VM.

 

Nimble Hybrid Storage for Azure VM

Microsoft Azure can be integrated with Nimble Cloud-Connected Storage based on the Nimble Storage Predictive Flash platform via Microsoft Azure ExpressRoute or Equinix Cloud Exchange connectivity solutions.

The Nimble storage is located in Equinix colocation facilities at proximity to Azure data centres to deliver fast, low-latency performance.

Key Features:

  • 9997% uptime and reliability over thousands of systems deployed in production.
  • Triple-parity RAID protection, data durability is improved by over 1,000x compared to traditional RAID6 protection.
  • Accelerates performance and optimises capacity via ExpressRoute and Equinix Cloud Exchange
  • On-Demand pay-for-what-you-use pricing model. Cloud Volumes pricing will start at $0.10/GB/month
  • Data mobility between Azure Cloud and Nimble Storage
  • Nimble’s Cloud Volumes (NCV) store block data for use by Azure compute instances
  • Data protection using Veeam Availability Suite or Veritas NetBackup

Direct Connectivity to Azure

Azure virtual machines connect directly to block storage volumes running on Nimble arrays. This provides access to secure, feature-rich and high-performance storage over a fast and low-latency connection.

Equinix Cloud Exchange provides further flexibility with Azure and Nimble storage connectivity by providing self-service on-demand provisioning and switchable virtual connections in the colocation facility. You can achieve this functionality using Nimble native tooling.

Hybrid Cloud Model

For hybrid clouds where you do need to move data from your on-premise storage to your cloud-connected storage Nimble’s efficient data replication ensures all data is compressed and only changed data is sent to minimise bandwidth requirements.

Nimble’s efficient data replication allows you to gain efficiency, reduce data transfer times, moreover, reduce network costs by avoiding massive data migrations to and from your on-premise storage or private cloud to the public cloud.

Regulatory Compliance

Breakdown one of the top barriers to cloud adoption. You always own and control your data when you use Nimble Cloud-Connected Storage allowing you to address data security as well as corporate compliance or governance requirements.

Low-Cost Disaster Recovery Solution

Pay for disaster recovery only when you need it instead of keeping fully operational secondary servers up at all times. Leverage the ability to quickly turn on Azure virtual machines to enable your DR site for drills and actual failures and turn them off when you are done. All the while Nimble’s efficient data replication ensures your DR data is up-to-date and secure.

Dev/Test Environments

If your production environment is on-premise, it is difficult to leverage the cloud for Dev/test since you need to move data back and forth between the cloud. With Nimble Cloud-Connected Storage, instant snapshots are made of your production environment and zero-copy clones of that data are immediately available for Azure virtual machines that can be spun up quickly for dev/test.

Secure Private Storage for the Public Cloud Apps

Stop debating which applications can move to the cloud due to concerns about Security, privacy performance, and reliability. With Nimble Cloud-Connected Storage, you will always control your data while taking advantage of Azure virtual machines for cloud compute.

Other use cases such as big data analytics and application cloud bursting can leverage Nimble Cloud-Connected Storage to gain agility, improve performance, while maintaining sovereignty and ownership of your data.

 

 

 

EMC Unity Hybrid Storage for Azure Cloud Integration

The customers who have placed their workload in both on-premises and cloud forming a “Hybrid Cloud” model for your Organisation, you probably need on-premises storage which meets the requirement of hybrid workloads. EMC’s Unity hybrid flash storage series may be the answer to your business critical problem. This unified storage array is designed for organisations from midmarket to the enterprise. Cover the broadest range of workloads – SAN and NAS both. The EMC unity has been designed for workloads rather than a tin seating on your data centre consuming power and cooling bills, and you are calling it a SAN. After all, that was a traditional tin-based SAN solution.

Previously I wrote an article about Dell Compellent. I received an overwhelming response from the Compellent user. I have been asked many occasion what other option do we have if not the Compellent storage.

To answer the question, I would choose from either EMC Unity Hybrid Storage, Nimble and NetApp Storage subject to the in-depth analysis of workloads, casestudy and business requirements. But again, this is a “Subject to x,y,z” question. The tin-based storage does not fulfil the modern business requirement. I would personally like to use Azure or AWS than procure any tin and pay for power, cooling and racks.

EMC Unity

The Unity midrange storage for flash and rich data services based on dense SSD technology helps provide outstanding TCO. The Unity provides intelligent insight into SAN health with CloudIQ, which provides cloud-based proactive monitoring and predictive analytics. Additionally, the ongoing operation is simple with proactive assistance and automated remote support.

What I like about Unity is that the Unity Software, most notably CloudIQ, Appsync and Cloud Tiering Appliance. The Unity has the capabilities include point-in-time snapshots, local and remote data replication, built-in encryption, and deep integration with VMware, Microsoft Apps, Hyper-v, Azure Blob, AWS S3 and OpenStack ecosystems. The Unity provides an automated tiering and flash-caching, the most active data is served from flash.

Management

The Unity provides the most user-friendly GUI management interface. After installing and powering on the purpose-built Dell EMC Unity system for the first time, the operating environment will boot. The interfaces are well-defined and highlighted for areas of interest – drive faults, network link failures, etc. Within Unisphere are some options for support, including Unisphere Online Help and the Support page where FAQs, videos, white papers, chat sessions, and more

Provisioning Storage

The EMC Unity offers both block and file provisioning in the same enclosure. The Disk Drives are provisioned into Pools that can be used to host both block and file data. Connectivity is offered for both block and file protocols using iSCSI and Fibre Channel. You can access LUNs, Consistency Groups, Thin Clones, VMware Datastores (VMFS), and VMware Virtual Volumes.

Fast VP

The FAST VP (Fully Automated Storage Tiering for Virtual Pools) is a very smart solution for dynamically matching storage requirements with changes in the frequency of data access. Fast VP segregate disk drives in three tiers

  • Extreme Performance Tier – SSD
  • Performance tier – SAS
  • Capacity Tier – NL-SAS

Fast VP Policies – FAST VP is an automated feature but provide controls to setup user-defined tiering policies to ensure the best performance for various environments. FAST VP uses an algorithm to make data relocation decisions based on the activity level of each slice.

  • Highest Available Tier
  • Auto-Tier
  • Start High then Auto-Tier
  • Lowest Available Tier
  • No Data Movement

Cloud Tiering Appliance (CTA)

If you are an organisation with hybrid cloud and you would like to move data from on-premises to Azure Cloud or AWS S3, then Cloud Tiering Appliance (CTA) is the best solutions for you to move data to a cloud-based on user-configured policies. The other way is also true which means you can return your data to on-premises using this appliance.

Why do you need this appliance? If you run of storage or free-up space, you can do it on the fly without capital expenditure. This ability optimises primary storage usage, dramatically improves storage efficiency, shortens the time required to back up data, and reduces overall TCO for primary storage. This functionality also reduces your own data centre footprint. You can move both file and block data to Azure Cloud or AWS S3 using CTA.

EMC CloudIQ

Another cool feature is CloudIQ. CloudIQ provides the operational insights and overall health scores EMC midrange storage. CloudIQ provides Central monitoring, predictive analytics and health monitoring.

CloudIQ is a no-cost SaaS application that non-disruptively provides overall health scores for Unity systems through cloud-based proactive monitoring and intelligent, predictive analytics.

AppSync Data Protection

Your priority is workload. You must protect workloads and simplify management of workloads. AppSync empowers you to satisfy copy demand for data repurposing, operational recovery, and disaster recovery with AppSync.

AppSync simplifies, orchestrates, and automates the process of generating and consuming copies of production data. You can integrate AppSync with Oracle, Microsoft SQL Server, and Microsoft Exchange for application-consistent copy management. AppSync is the single user interface and provides VM-consistent copies of data stores and individual VM recovery for VMware environments

RecoveryPoint

EMC RecoverPoint provides continuous data protection with multiple recovery points to restore applications instantly to a specific point in time. EMC RecoveryPoint protects applications with bidirectional synchronous and asynchronous replication for recovery of physical, virtual, and cloud infrastructures. Minimize network utilisation with unique bandwidth compression and deduplication, significantly reducing replicated data over the network.

RecoveryPoint is software-only solutions to manage the disaster recovery provisioning and control their replication policies and recovery, ensuring that VM service levels are met.

EMC Storage Analytics

The Storage Analytics software lets you extend VMware vRealize Operations analytics to supported EMC storage platforms. Optimize performance and diagnose issues across physical storage and virtual machines with EMC Storage Analytics (ESA).

The Storage Analytics is dashboards based visual tools provide deep visibility into EMC infrastructure. Actionable capacity and performance analysis help you troubleshoot, identify, and act on issues fast.

Encryption

EMC Unity lets you encrypt user data as it is written to the backend drives, and decrypted during departure. Because encryption and decryption are handled via a dedicated hardware piece on the SAS interface, there is minimal impact on Unity Storage. The system also supports external key management through the use of the Key Management Interoperability Protocol (KMIP).

Conclusion

The Unity Hybrid Storage reduce cost, datacentre footprint, complexity and management overhead of your SAN systems while maintaining workload performance, protection and path to migrate data to Azure Cloud or AWS.

Office 365 Hybrid Deployment with Multiple Active Directory Forests

This article explains how you can deploy a hybrid Office 365 and Exchange on-premises environment with multiple Active Directory Forest. An organisation that utilizes an account forest and a resource forest to separate Active Directory accounts and Exchange servers in a single forest, aren’t considered as multiple AD Forest. Let’s say Company A (DomainA.com) bought Company B (DomainB.com). Company A has an Office 365 tenant with default domain domainA.onmicrosoft.com. Now Company A wishes to migrate Company B mailboxes into the Office 365 tenant but maintains the hybrid environment.

Here is the infrastructure you should consider.

AD Forest 1 AD Forest 2
On-prem Forest Corp.DomainA.com Corp.DomainB.com
Email Domain or Externally Routable NameSpace DomainA.com DomainB.com
Externally Routable Autodiscover CNAME Autodiscover.DomainA.com Autodiscover.DomainB.com
Default Domain in Office 365 Tenant domainA.onmicrosoft.com domainA.onmicrosoft.com
On-Prem Exchange Server Version Exchange 2013 SP1 or later Exchange 2013 SP1 or later
On-prem Certificate Issued by Public CA

CN= mail.DomainA.com

SAN=Autodiscover.DomainA.com

Issued by Public CA

CN= mail.DomainB.com

SAN=Autodiscover.DomainB.com

To configure a hybrid environment for a multi-forest organization, you’ll need to complete the basic steps below:

  1. Create Two-Way Trust Relationship between on-premises Corp.DomainA.com and On-premises Corp.DomainB.com if Trust relationship is not already established.
  2. Make sure you have correct public certificates for both Exchange Organisation.
  3. Build AAD Connect Server in Corp.DomainA.com Domain. AD Synchronisation occurs Corp.DomainA.com domain. you do not need to add another AAD Connect server in domainB.com domain. Run custom AAD Connect wizard and use domain filter and select both domains to sync to Azure AD.
  4. Build ADFS Farm in Corp.DomainA.com Domain. You use either AD FS or password sync to allow for a seamless user authentication experience for both domains.
  5. Add domain and verify both domains in Office 365 tenant. Setup both domain in Office tenant as an Internal Relay Domain
  6. Run Hybrid Configuration wizard in both Forest. Select both domains whilst running HCW.  For Centralized MailFlow Configuration of both domains, you must retain your existing MX record. Add EOP in your SPF record for the both domains. If you do not wish to configure Centralized MailFlow then point MX record to the EOP record of Exchange Online.

AAD Connect Recommendations:

  • Separate Topology – This topology might be the situation after a merger/acquisition or in an organization where each business unit operates independently. These forests are in the same organization in Azure AD and appear with a unified GAL.

In AAD Connect Wizard Select “Users are only once across all forests” and Mail Attribute.

  • Full Mesh- A full mesh topology allows users and resources to be located in any forest. Commonly, there are two-way trusts between the forests.

In AAD Connect Wizard Select “Users identities exist across multiple forests” and Mail Attribute.

Hybrid with Multiple Forest  Recomendations:

  • Having a single tenant in Azure AD for an organization
  • Having a single ADD connect server for an organisation
  • Having a unique Active Directory object for an organisation. Each unique object is synced into the Azure AD for once only.
  • Having a single on-prem namespace (UPN: domainA.com, domainB.com) to match the registered domain in Azure AD.
  • Having a single namespace associated with an user or an object
  • Having all email domains registered in a single tenant
  • Having a single AAD Connect and ADFS Farm in a same forest if “Federation with ADFS” is selected in AAD Connect custom installation Wizard

Relevant Article:

Office 365 Hybrid Deployment with Exchange 2016 Step by Step