Nimble Hybrid Storage for Azure VM

Microsoft Azure can be integrated with Nimble Cloud-Connected Storage based on the Nimble Storage Predictive Flash platform via Microsoft Azure ExpressRoute or Equinix Cloud Exchange connectivity solutions.

The Nimble storage is located in Equinix colocation facilities at proximity to Azure data centres to deliver fast, low-latency performance.

Key Features:

  • 9997% uptime and reliability over thousands of systems deployed in production.
  • Triple-parity RAID protection, data durability is improved by over 1,000x compared to traditional RAID6 protection.
  • Accelerates performance and optimises capacity via ExpressRoute and Equinix Cloud Exchange
  • On-Demand pay-for-what-you-use pricing model. Cloud Volumes pricing will start at $0.10/GB/month
  • Data mobility between Azure Cloud and Nimble Storage
  • Nimble’s Cloud Volumes (NCV) store block data for use by Azure compute instances
  • Data protection using Veeam Availability Suite or Veritas NetBackup

Direct Connectivity to Azure

Azure virtual machines connect directly to block storage volumes running on Nimble arrays. This provides access to secure, feature-rich and high-performance storage over a fast and low-latency connection.

Equinix Cloud Exchange provides further flexibility with Azure and Nimble storage connectivity by providing self-service on-demand provisioning and switchable virtual connections in the colocation facility. You can achieve this functionality using Nimble native tooling.

Hybrid Cloud Model

For hybrid clouds where you do need to move data from your on-premise storage to your cloud-connected storage Nimble’s efficient data replication ensures all data is compressed and only changed data is sent to minimise bandwidth requirements.

Nimble’s efficient data replication allows you to gain efficiency, reduce data transfer times, moreover, reduce network costs by avoiding massive data migrations to and from your on-premise storage or private cloud to the public cloud.

Regulatory Compliance

Breakdown one of the top barriers to cloud adoption. You always own and control your data when you use Nimble Cloud-Connected Storage allowing you to address data security as well as corporate compliance or governance requirements.

Low-Cost Disaster Recovery Solution

Pay for disaster recovery only when you need it instead of keeping fully operational secondary servers up at all times. Leverage the ability to quickly turn on Azure virtual machines to enable your DR site for drills and actual failures and turn them off when you are done. All the while Nimble’s efficient data replication ensures your DR data is up-to-date and secure.

Dev/Test Environments

If your production environment is on-premise, it is difficult to leverage the cloud for Dev/test since you need to move data back and forth between the cloud. With Nimble Cloud-Connected Storage, instant snapshots are made of your production environment and zero-copy clones of that data are immediately available for Azure virtual machines that can be spun up quickly for dev/test.

Secure Private Storage for the Public Cloud Apps

Stop debating which applications can move to the cloud due to concerns about Security, privacy performance, and reliability. With Nimble Cloud-Connected Storage, you will always control your data while taking advantage of Azure virtual machines for cloud compute.

Other use cases such as big data analytics and application cloud bursting can leverage Nimble Cloud-Connected Storage to gain agility, improve performance, while maintaining sovereignty and ownership of your data.

 

 

 

Configuring EMC DD Boost with Veeam Availability Suite

This article provides a tour of the configuration steps required to integrate EMC Data Domain System with Veeam Availability Suite 9 as well as provides benefits of using EMC DD Boost for backup application.

Data Domain Boost (DD Boost) software provides advanced integration with backup and enterprise applications for increased performance and ease of use. DD Boost distributes parts of the deduplication process to the backup server or application clients, enabling client-side deduplication for faster, more efficient backup and recovery. All Data Domain systems can be configured as storage destinations for leading backup and archiving applications using NFS, CIFS, Boost, or VTL protocols.

The following applications work with a Data Domain system using the DD Boost interface: EMC Avamar, EMC NetWorker, Oracle RMAN, Quest vRanger, Symantec Veritas NetBackup (NBU), Veeam and Backup Exec. In this example, we will be using Veeam Availability Suite version 9.

Data Domain Systems for Service Provider

Data Domain Secure Multitenancy (SMT) is the simultaneous hosting by a service provider for more than one consumer (Tenant) or workload (Applications, Exchange, Standard VMs, Structured Data, Unstructured Data, Citrix VMs).

SMT provides the ability to securely isolate many users and workloads in a shared infrastructure, so that the activities of one Tenant are not apparent or visible to the other Tenants. A Tenant is a consumer (business unit, department, or customer) who maintains a persistent presence in a hosted environment.

Basic Configuration requirements are:

  • Enable SMT in the DD System
  • Role Based Access Control in DD Systems
  • Tenant Self-Service in the DD Systems
  • A Tenant is created on the DD Management Center and/or DD system.
  • A Tenant Unit is created on a DD system for the Tenant.
  • One or more MTrees are created to meet the storage requirements for the Tenant’s various types of backups.
  • The newly created MTrees are added to the Tenant Unit.
  • Backup applications are configured to send each backup to its configured Tenant Unit MTree.

Prerequisites:

  1. Backup Server

Physical Server- Fibre Channel or iSCSI

OR

Virtual Server- Fibre Channel with N-Port Virtualization or NPIV or Pass-through Storage or iSCSI

  1. Backup Software

Backup Application, DD Boost Library, DD Boost-over-FC Transport

  1. Storage Area Network

Fibre Channel or iSCSI

  1. Data Domain System

DD Boost Service

DD Boost-over-FC Server

SCSI Commands over FC

SCSI Processor Devices

  1. Virtual Infrastructure

Hyper-v Server cluster & System Center Virtual Machine Manager OR

VMware vCenter with vSphere Hosts

Designing DD Boost for resiliency & availability

The Data Domain System broadcast itself to the backup server using one or more path physically or virtually connected. The design of entire systems depend on the Data Domain sizing on how you connect Data Domain with backup server(s), how many backup jobs will be running, size of backup, de-duplication, data retention and frequency of data restore. A typical backup solution should include the following environment.

  • Backup server with 2 initiator HBA ports (A and B)
  • Data Domain System has 2 FC target endpoints (C and D)
  • Fibre Channel Fabric zoning is configured such that both initiator HBA ports can access both FC target endpoints
  • Data Domain system is configured with a SCSI target access group containing:
  • Both FC target endpoints on the Data Domain System
  • Dual Fabric for fail over and availability
  • Multiple physical and logical Ethernet for availability and fail over

Examples of Sizing

To calculate the maximum simultaneous connection to Data Domain Fibre Channel System (DFC) from all Backup servers. DFC device (D) is the number of devices to be advertised to the initiator of the backup server(s). Lets say we have 1 backup server, single data domain systems, the backup server is running 100 backup jobs.

DFC Device Count D= (minimum 2 X S)/128

J=1 Backup Server x 100 Backup Jobs=100

C= 1 (Single DD System)

S=JXC (100X1)=100

D=2*100/128 = 1.56 rounded up 2

Therefore, all DFC groups on the Data Domain system must be configured with 2 devices.

Step1: Preparing DD System

Step2: Managing system licenses

  1. Select Administration > Licenses> Click Add Licenses.
  2. On the License Window, type or paste the license keys. Type each key on its own line or separate each key by a space or comma (DD System Manager automatically places each key on a new line)
  3. Click Add. The added licenses display in the Added license list.

OR

  1. In System Manager, select Protocols > DD Boost > Settings. If the Status indicates that DD Boost is not licensed, click Add
  2. License and enter a valid license in the Add License Key dialog box.

Step3: Setting up CIFS Protocol

  1. On the DD System Manager Navigation>click Protocols > CIFS.
  2. In the CIFS Status area, click Enable.

Step4: Remove Anonymous Log on

  1. Select Protocols > CIFS > Configuration.
  2. In the Options area, click Configure Options.
  3. To restrict anonymous connections, click the checkbox of the Enable option in the

Step4: Restrict Anonymous Connections area.

  1. In the Log Level area, click the drop-down list to select the level number 1.
  2. In the Server Signing area, select Enabled to enable server signing

Step5: Specifying DD Boost user names

The following user will be used to connect to DD boost from backup software.

  1. Select Protocols > DD Boost.
  2. Select Add, above the Users with DD Boost Access list.
  3. On the Add User dialog appears. To select an existing user, select the user name in the drop-down list. EMC recommends that you select a user name with management role privileges set to none.
  4. To create and select a new user, select Create a new Local User and Enter the password twice in the appropriate fields. Click Add.

Step6: Enabling DD Boost

  1. Select Protocols > DD Boost > Settings.
  2. Click Enable in the DD Boost Status area.
  3. Select an existing user name from the menu then complete the wizard.

Step7: Creating a storage unit

  1. Select Protocols > DD Boost > Storage Units.
  2. Click Create. The Create Storage Unit dialog box is displayed.
  3. Enter the storage unit name in the Name box e.g. DailyRepository1
  4. Select an existing username that will have access to this storage unit. EMC recommends that you select a username with management role privileges set to none. The user must be configured in the backup application to connect to the Data Domain system.
  5. To set storage space restrictions to prevent a storage unit from consuming excess space: enter either a soft or hard limit quota setting, or both a hard and soft limit.
  6. Click Create.
  7. Repeat the above steps for MonthlyRepository1 each Data Domain Boost-enabled system.

Step8: Encrypting Communication between Backup Server and Data Domain (Optional)

Generate an advanced certificate from Active Directory Certificate services and install into the Data Domain DD Boost. You must install the same certificate into the backup servers so that both data domain and data domain client which is backup server can talk to each via encrypted certificate.

  1. Start DD System Manager on the system to which you want to add a host certificate.
  2. Select Protocols > DD Boost > More Tasks > Manage Certificates….
  3. In the Host Certificate area, click Add.
  4. To add a host certificate enclosed in a .p12 file, Select I want to upload the certificate as a .p12 file. Type the password in the Password box.
  5. Click Browse and select the host certificate file to upload to the system.
  6. Click Add.
  7. To add a host certificate enclosed in a .pem file, Select I want to upload the public key as .pem file and use a generated private key. And Click Browse and select the host certificate file to upload to the system.
  8. Click Add.

DD Boost client access and encryption

  1. Select Protocols > DD Boost > Settings.
  2. In the Allowed Clients section, click Create. The Add Allowed Client dialog appears.
  3. Enter the hostname of the client. This can be a fully-qualified domain name (e.g. Backupserver1.domain.com) or a hostname with a wildcard (e.g. *.domain.com).
  4. Select the Encryption Strength. The options are None (no encryption), Medium (AES128-SHA1), or High (AES256-SHA1).
  5. Select the Authentication Mode. The options are One Way, Two Way.
  6. Click OK.

Step9:Configuring DD Boost over Fibre Channel

  1. Select Protocols > DD Boost > Fibre Channel.
  2. Click Enable to enable Fibre Channel transport.
  3. To change the DD Boost Fibre Channel server name from the default (hostname), click Edit, enter a new server name, and click OK.
  1. Select Protocols > DD Boost > Storage Units to create a storage unit (if not already

created by the application).

  1. Install the DD Boost API/plug-in (if necessary, based on the application).

Step10: Configuring storage for DD Extended Retention (Optional)

Before you proceed with Extended Retention you must add required license on the DD System.

  1. Select Hardware > Storage tab.
  2. In the Overview tab, select Configure Storage. In the Configure Storage tab, select the storage to be added from the Available Storage list.
  3. Select the appropriate Tier Configuration (or Active or Retention) from the menu.
  4. Select the checkbox for the Shelf to be added.
  5. Click the Add to Tier button. Click OK to add the storage.

Step11: Configure a Veeam backup repository

  1. To create an EMC Data Domain Boost-enabled backup repository, navigate to the Backup Infrastructure section of the user interface, then select Backup Repositories and right-click to select Add Backup Repository.

DDBoost

  1. The next step is to select the repository type, De-duplicating storage appliance. Type the Name of the DD Systems, Choose Fibre Channel or Ethernet Option, add credentials to connect to DD System and Gateway to connect to DD System. To be able to connect Veeam Backup server to the DD System using Fibre Channel you must add DD System & Veeam Backup server in the same SAN zone. You also need to enable FC on the DD System. To be able to connect Veeam Backup Server using Ethernet Veeam backup Server and DD System must be in same VLAN or for multi-VLAN you must enable unrestricted communication between VLANs.
  2. On the next screen, select the Storage Unit of the DD System to be used by the Veeam Server as repository, leave concurrent connection as default
  3. On the Next screen, enable vPower NFS, complete the wizard

Step12: Configure Veeam Backup Job & Backup Copy Job

The critical decision on backup jobs will be whether to do an active full backup or leverage synthetic full backups. Veeam Backup Job Creation GuideVeeam Backup Copy Job Creation Guide

Here is short business case of backup type.

Veeam Backup Options:

  1. Active Full- Financial or health sector prefer to keep a monthly full backup of data and retain certain period of time for corporate compliance and satisfying external auditor’s  requirement to keep data off-site for a period of time.
  2. Synthetic Full- A standard practice to keep synthetic full at all time to reduce storage cost and recovery time objective for any organization.

Sythetic

  • For most environments, Veeam recommends to do synthetic full backups when leveraging EMC Data Domain Boost. This will save stress on primary storage for the vSphere and Hyper-V VMs and the Boost-enabled synthesizing is very fast.
  • For a Backup Copy job using GFS retention (Monthly, Weekly, Quarterly and/or Annual restore points), the gateway server must be closest to the Data Domain server, since the Backup Copy job frequently involves an offsite transfer. When the Data Domain server is designated in the repository setup, ensure that consideration is given to the gateway server if it is being used off site.
  • Backup job timed out value must be higher than 30 minutes to be able to retry the job if it is to fail for any reason

DD System Option:

  • A virtual synthetic full backup is the combination of the last full (synthetic or full) backup and all subsequent incremental backups. Virtual synthetics are enabled by default.
  • The synthetic full backups are faster when Data Domain Boost is enabled for a repository
  • DD Boost reduces backup transformation time by less than 80% of total time if DD Boost was not used.
  • The first job has the bulk of the blocks of the vSphere or Hyper-V VM on the DD Boost Storage Unit, it will only need to transfer metadata and any possible changed blocks. This can be a significant improvement on the active full backup process when there is a fast source storage resource in place.
  • With DD Boost, multi-link provides fail over & resiliency. DD Boost also provides parallel processing of concurrent jobs to DD Boost Storage unit.
  1. To display the DD Boost option settings, select Protocols > DD Boost > Settings >Advanced Options.
  2. To change the settings, select More Tasks > Set Options. Select or deselect any option to be enabled.
  3. Click OK.

Microsoft Multi-Site Failover Cluster for DR & Business Continuity

Not every organisation looses millions of dollar per second but some does. An organisation may not loose millions of dollar per second but consider customer service and reputation are number one priority. These type of business wants their workflow to be seamless and downtime free. This article is for them who consider business continuity equals money well spent. Here is how it is done:

Multi-Site Failover Cluster

Microsoft Multi-Site Failover Cluster is a group of Clustered Nodes distribution through multiple sites in a region or separate region connected with low latency network and storage. As per the diagram illustrated below, Data Center A Cluster Nodes are connected to a local SAN Storage, while replicated to a SAN Storage on the Data Center B. Replication is taken care by a identical software defined storage on each site.  Software defined storage will replicate volumes or Logical Unit Number (LUN) from primary site in this example Data Center A to Disaster Recovery Site B. Microsoft Failover cluster is configured with pass-through storage i.e. volumes and these volumes are replication to DR site. In the Primary and DR sites, physical network is configured using Cisco Nexus 7000. Data network and virtual machine network are logically segregated in Microsoft System Center VMM and physical switch using virtual local area network or VLAN.  A separate Storage Area Network (SAN) is created in each site with low latency storage. Volumes of pass-through storage are replicated to DR site using identical size of volumes.

image

                                     Figure: Highly Available Multi-site Cluster

image

                           Figure: Software Defined Storage in Each Site

 Design Components of Storage:

  • SAN to SAN replication must be configured correctly
  • Initial must be complete before Failover Cluster is configured
  • MPIO software must be installed on the cluster Nodes (N1, N2…N6)
  • Physical and logical multipathing must be configured
  • If Storage is presented directly to virtual machines or cluster nodes then NPIV must configured on the Fabric Zones.
  • All Storage and Fabric Firmware must up to date with manufacturer latest software
  • An identical software defined storage must be used on the both sites 
  • If a third party software is used to replicate storage between sites then storage vendor must be consulted before the replication. 

Further Reading:

Understanding Software Defined Storage (SDS)

How to configure SAN replication between IBM Storwize V3700 systems

Install and Configure IBM V3700, Brocade 300B Fabric and ESXi Host Step by Step

Application Scale-out File Systems

Design Components of Network:

  • Isolate management, virtual and data network using VLAN
  • Use a reliable IPVPN or Fibre optic provider for the replication over the network
  • Eliminate all single point of failure from all network components
  • Consider stretched VLAN for multiple sites 

Further Reading:

Understanding Network Virtualization in SCVMM 2012 R2

Understanding VLAN, Trunk, NIC Teaming, Virtual Switch Configuration in Hyper-v Server 2012 R2

Design failover Cluster Quorum

  • Use Node & File Share Witness (FSW) Quorum for even number of Cluster Nodes
  • Connect File Share Witness on to the third Site
  • Do not host File Share Witness on a virtual machine on same site
  • Alternatively use Dynamic Quorum

Further Reading:

Understanding Dynamic Quorum in a Microsoft Failover Cluster

Design of Compute

  • Use reputed vendor to supply compute hardware compatible with Microsoft Hyper-v
  • Make sure all latest firmware updates are applied to Hyper-v host
  • Make manufacture provide you with latest HBA software to be installed on Hyper-v host

Further Reading:

Windows Server 2012: Failover Clustering Deep Dive Part II

Implementing a Multi-Site Failover Cluster

Step1: Prepare Network, Storage and Compute

Understanding Network Virtualization in SCVMM 2012 R2

Understanding VLAN, Trunk, NIC Teaming, Virtual Switch Configuration in Hyper-v Server 2012 R2

Install and Configure IBM V3700, Brocade 300B Fabric and ESXi Host Step by Step

Step2: Configure Failover Cluster on Each Site

Windows Server 2012: Failover Clustering Deep Dive Part II

Understanding Dynamic Quorum in a Microsoft Failover Cluster

Multi-Site Clustering & Disaster Recovery

Step3: Replicate Volumes

How to configure SAN replication between IBM Storwize V3700 systems

How to create a Microsoft Multi-Site cluster with IBM Storwize replication

Use Cases:

Use case can be determined by current workloads and future workloads plus business continuity. Deploy Veeam One to determine current workloads on your infrastructure and propose a future workload plus business continuity.  Here is a list of use cases of multi-site cluster.

  • Scale-Out File Server for application data-  To store server application data, such as Hyper-V virtual machine files, on file shares, and obtain a similar level of reliability, availability, manageability, and high performance that you would expect from a storage area network. All file shares are simultaneously online on all nodes. File shares associated with this type of clustered file server are called scale-out file shares. This is sometimes referred to as active-active.

  • File Server for general use – This type of clustered file server, and therefore all the shares associated with the clustered file server, is online on one node at a time. This is sometimes referred to as active-passive or dual-active. File shares associated with this type of clustered file server are called clustered file shares.

  • Business Continuity Plan

  • Disaster Recovery Plan

  • DFS Replication Namespace for Unstructured Data i.e. user profile, home drive, Citrix profile

  • Highly Available File Server Replication 

Multi-Site Hyper-v Cluster for High Availability and Disaster Recovery

In most of the SMB customer, the nodes of the cluster that reside at their primary data center provide access to the clustered service or application, with failover occurring only between clustered nodes. However for an enterprise customer, failure of a business critical application is not an option. In this case, disaster recovery and high availability are bonded together so that when both/all nodes at the primary site are lost, the nodes at the secondary site begin providing service automatically, or with minimal intervention.

The maximum availability of any services or application depends on how you design your platform that hosts these services. It is important to follow best practices in Compute, Network and Storage infrastructure to maximize uptime and maintain SLA.

The following diagram shows a multi-site failover cluster that uses four nodes and supports a clustered service or application.

 

image

 

The following rack diagram shows the identical compute, storage and networking infrastructure in both site.

image

Physical Infrastructure

  • Primary and Secondary sites are connected via 2x10Gbps dark fibre
  • Storage vendor specific replication software such as EMC recovery point
  • Storage must have redundant storage processor
  • There must be redundant Switches for networking and storage
  • Each server must be connected to redundant switches with redundant NIC for each purpose
  • Each Hyper-v server must have minimum dual Host Bus Adapter (HBA) port connected to redundant MDS switches
  • Each network must be connected to dual NIC from server to switches
  • Only iLO/DRAC will have a single connection
  • Each site must have redundant power supply.

Storage Requirements

Since I am talking about highly available and redundant systems design, this sort of design must consist of replicated or clustered storage presented to multi-site Hyper-v cluster nodes. Replication of data between sites is very important in a multi-site cluster, and is accomplished in different ways by different hardware vendors. You will achieve high performance through hardware or block level replication instead of software. You should contact your storage vendor to come up with solutions that provide replicated or clustered storage.

Network Requirements:

A multi-site cluster running Windows Server 2008 can contain nodes that are in different subnet however as a best practice, you must configure Hyper-v cluster in same subnet. You applications and services can reside in separate subnets. To avoid any conflict, you should use dark fibre connection or MPLS network between multi-sites that allows VLANs.

Note that you must configure Hyper-v with static IP. In a multi-site cluster, you might want to tune the “heartbeat” settings, see http://go.microsoft.com/fwlink/?LinkId=130588 for details.

Network Configuration Spread Sheet

Network

VLAN ID

NICs and Switch Ports speed

iLO/DRAC

10

1Gbps

MGMT

20

2x1Gbps

Live Migration

30

2x10Gbps

Storage Migration

40

2x10Gbps

Virtual Machine

50,60

4x10Gbps

iSCSI Network

70

4x10Gbps

Heartbeat network

80

2x1Gbps

Storage Replication

(Separate from Hyper-v)

90

Dark Fibre

2x10Gbps

Note that iSCSI network is only required if you are using IP Storage instead of Fibre Channel (FC) storage.

Cluster Selection: Node and File Share Majority (For Cluster with Special Configurations)

Quorum Selection: Since you will be configuring Node and File Share Majority cluster, you will have the option to place quorum files to shared folder. Where do you place this shared folder? Since we are talking about fully redundant and highly available Hyper-v Cluster, we have several options to place quorum shared folder.

Option1: Secondary Site

Option 2: Third Site

Visit http://technet.microsoft.com/en-us/library/cc770620%28WS.10%29.aspx for more details on quorum.

Hyper-v Cluster Configuration:

Visit https://araihan.wordpress.com/2013/06/04/windows-server-2012-failover-clustering-deep-dive/ for detailed cluster configuration guide.

Understand “X as a Service” or get stuck in “Pizza box as a Service”

“X or Anything as a Service” is an acronym used by many cloud provider and offering almost end to end services to a business. The most traditional use of “X” are Software as a Service (XaaS), Infrastructure as a Service (IaaS), Desktop as a Service (DaaS) and Platform as a Service (PaaS). The other use of “X” are Storage as a Service (SaaS), Communications as a Service (CaaS), Backup as a Service (BaaS), Disaster Recovery as a Service (DRaaS), Network as a Service (NaaS) and Monitoring as a Service (MaaS).

As a CIO or CTO of an organization have you had a business case of your organisation how your organization is benefited from “Anything as a Service”? How does it translate your business in terms of consumption of information technology if it was on premises comparing off the premises or so called cloud. The most service provider compete with each other getting a piece of pie from these cloud computing era. However to cut cost these provider going below the bench mark and taking the cloud into “Craig list” where everything offered cheap scarifying quality making it “Pizza box as a Service”.

Here are some guidelines for you to measure your workload, services and application before signing up with a cloud provider.

  1. What type of services or application you would like to migrate to cloud?
  2. Are you migrating tier 1 application to cloud?
  3. What is your peak demand of IO or IOPS for all virtual infrastructure, VDI, services and application?
  4. What is peak period latency requirement for an application and a service of your organisation?
  5. What is your peak bandwidth requirements?
  6. What is the up time requirements?
  7. What is SLA and SLR of your business with the service provider?
  8. Do you have penalty clause with the service provider?
  9. What is your RPO and RTO to business when choosing DRaaS?
  10. What is corporate compliance and data retention policy when choosing BaaS?
  11. Do you have good/great user experience matrix in your organisation?

Once you have answered these question, gather data from existing infrastructure and analyse your requirement than it’s time for you to;

  1. Prepare a business case for Anything as a Service
  2. Identify option1, option2, option 3 for cloud services
  3. Knowing cloud provider
  • Learn more about cloud provider hosting platform
  • Learn more about cloud provider engineering and support capabilities
  • Learn more about cloud provider outbound bandwidth and redundancy of network infrastructure
  • Learn more about redundancy of storage infrastructure of cloud provider
  • Who are the hardware and software partners of cloud provider
  • How user friendly is the management portal of cloud provider

4. Compare and select potential cloud provider

If you haven’t identified above criteria and you are aware that you signed up with a cloud provider who simply patch together a 1Gbe network, 1U rack server and Dell Compellent storage with few SATA disk than you signed for a “Pizza box as a service”. You know that your 2WD car is heading towards off road and you are about to get stuck in mud.

When comes decision making time, count every factor into account and make a decision that provide an outcome you want instead of cheap pizza box as a service which neither fulfil your requirement nor fulfil SLA of your business. Remember it’s about your business not the business of cloud provider.